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METHODS AND APPARATUS FOR IMAGE
PROCESSING AND ANALYSIS

BACKGROUND

Asisknownintheart, a variety of techniques are known for
enhancing images of scenes which are obscured by backscat-
tered light. For example, there are many known methods for
enhancing the contrast of images in such circumstances, but
the maximum improvement in the quality of the image is
limited by a number of factors, as disclosed in U.S. Pat. No.
6,462,768, which is incorporated herein by reference. For
example, the gain ofthe camera or other sensing system is set,
usually by an automatic gain control, to the maximum bright-
ness of the image. When the scattered light component is
large, the transmitted terrain component becomes small in
comparison with the quantization noise of the sensor. In addi-
tion, the backscattered light often has a random component
that is a source of noise which is amplified by any contrast-
stretching transformation implemented by the sensor. Fur-
ther, in low light conditions, statistical fluctuations in the
transmitted photon flux give rise to noise in the image. This
noise will be amplified by any transformation that increases
the range of contrasts present in the image.

Various contrast enhancement algorithms are known, for
example, variance normalization or histogram equalization,
see, e.g., U.S. Pat. Nos. 6,462,768, 6,982,764, 8,331,711,
5,681,112, 5,218,649, 6,876,777, 5,300,169, and 6,064,775,
and U.S. Patent Publications No. 2012/0275721, all of which
are incorporated herein by reference. In practice, however,
such known contrast enhancement algorithms have not pro-
vided particularly good results.

The aim of image enhancement is to modify input images
in such a way that the visual content contained in the image is
improved with respect to a set of defined criteria. As there is
no single set of criteria which can universally define an ideal
enhancement, many image enhancement techniques have
been proposed. The most basic of image enhancement
approaches include pixel transformations such as logarithmic
transformations, gamma transformations, and contrast
stretching operations, which define a fixed or parametrically
adjustable one-to-one mapping by which the intensity values
of individual pixels are modified. Histogram equalization is
an automated enhancement process which uses the histogram
of'the input image itself to determine the one-to-one mapping
of intensity values for which an approximately uniform dis-
tribution is yielded in the enhanced result. This procedure has
been further generalized to histogram matching, whereby the
input histogram is matched to any defined histogram distri-
bution. As these methods use global image properties to deter-
mine pixel transformations and apply the same transforma-
tion to each pixel in the same way regardless of local image
information, they may not be appropriately applied in a local
context and often times yield inadequate detail preservation
or over-enhancement. Consequently, adaptive procedures,
such as contrast-limited adaptive histogram equalization,
have been developed to locally adapt the enhancement pro-
cess based on local image features. Moreover, algorithms
such as multi-scale retinex attempt to model the transfer
functions of the human optical nerve, cortex, and so forth, and
formulate enhancement algorithms by implementing filters
which recreate these processes to model human vision. How-
ever, the way in which these approaches actually enhance,
and in particular, image edges, is still unpredictable. In this
sense, the approaches may be classified as indirect image
enhancement algorithms, as they enhance images and gener-
ally improve image contrast without explicitly defining image
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contrast itself. Conversely, direct image enhancement algo-
rithms quantitatively define a contrast measure in either a
spatial or transform domain, and achieve image enhancement
by increasing the measured contrast. Accordingly, direct
image enhancement algorithms have been developed using
contrast measures defined in the DCT, pyramidal, and wave-
let transform domains. These algorithms are capable of
enhancing fine local edge structures, but generally are less
successful in improving global image contrasts adequately
even when scale parameters are chosen appropriately. Over-
all, it is still observed that no single image enhancement
algorithm is capable of delivering an ideal enhancement for
all circumstances and practical applications.

The goal of image denoising is to remove the noise which
has corrupted an image. There may be many sources of the
noise itself, including the imaging devices, particularly when
image signals are weak, or a noisy transmission channel. Of
particular interest is the problem of removing additive white
Gaussian noise from images. The basic tradeoff which exists
in denoising is between the ability to effectively remove noise
while also accurately preserving edges. The most basic means
of Gaussian noise denoising is Gaussian filtering. However,
this approach is very prone to blurring edges and fine details
as it filters isotropically. Partial differential equation (PDE)
based approaches such as anisotropic diffusion generalize the
replace of the isotropic filter with a conduction function
which smoothes the image more in non-edge regions less on
edges. Total variational approaches formulate the denoising
problem as a constrained optimization problem. Wavelet-
based denoising approaches have also been proposed based
on several means of thresholding wavelet coefficients.
Despite the formulations of algorithms, there will always
inevitably be some tradeoft between sufficient noise remov-
ing and accurate edge preservation.

SUMMARY

Exemplary embodiments of the invention provide methods
and apparatus for a fusion-based multimedia processing sys-
tem and method that can solve real life multimedia related
issues. Exemplary embodiments of the invention provide sys-
tems and methods utilizing image fusion to perform image
processing by combining advantages of different image pro-
cessing approaches. In general, embodiments of the invention
improve over conventional approaches by the way in which
image fusion, and the combination of multiple images, are
integrated to improve existing image processing. Currently,
image fusion has only been used when multiple source
images from different capture techniques or imaging modali-
ties are available. Multiple source images may not be avail-
able for many practical applications, and thus, there has been
no means of utilizing image fusion in such cases. Exemplary
embodiments of the invention provide systematically use
image fusion when only a single image is available.

In embodiments, the system is also capable of processing
and fusing multiple source images if they are available. The
resulting system may be used for many different image appli-
cations, such as image enhancement, image denoising, edge
detection, image resizing, image resolution, image encryp-
tion, image standardization/coloring, and others.

Exemplary embodiments of the invention illustrate pos-
sible uses of the system in the context of image enhancement
and image denoising. As only a single image is used as input
to image enhancement processing, the system in this context
enhances the image using several different image enhance-
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ment processes, and fuses the results to obtain an enhanced
result that leverages the benefits of each of the secondary
enhancements.

In addition, since different image enhancement processes
are based on different criteria, exemplary embodiments of the
invention provide processing based upon the characteristics
of the different enhancement approaches to effectively com-
bine their advantages. In the context of image denoising, for
example, it is generally expected that only a single image is
available as input.

One embodiment provides iterative fusion-based denois-
ing which fuses secondary denoising results with various
degrees of smoothing. A small degree of smoothing is insuf-
ficient for removing noise in the image, but preserves the
edges of the images. Conversely, a large degree of smoothing
effectively removes noise but also blurs edges. Thus, the
combination of these secondary outputs by the proposed
iterative scheme allows for noise to be effectively removed
while also retaining image edges.

In one aspect of the invention, a method for performing
image fusion for image processing, comprises: receiving a
first input image (I); generating, using a computer processor,
N secondary outputs (I, n=1, 2, . . . N-1, N) using N com-
binations of secondary image processes and/or parameter sets
derived from the first input image (I); and fusing the interme-
diate outputs to yield a processed output (I').

In another aspect of the invention, a method for decoupling
local and global contrast enhancement processes for an origi-
nal image, comprises: performing, using a computer proces-
sor, indirect contrast enhancement of the original image to
yield a globally contrast-enhanced output; decomposing the
original image and the globally contrast-enhanced output
using a multi-resolution decomposition process; selecting
approximation information of the globally contrast-enhanced
output; calculating detail information to restore contrast of
the original image based on the approximation information of
the globally contrast-enhanced output; composing a fused
output using the selected approximation and the detail infor-
mation; and performing direct contrast enhancement to yield
a final output.

In a further aspect of the invention, an iterative method for
edge-preserving noise removal of an image, comprises: (a)
processing, using a computer processor, the image by gener-
ating secondary denoising outputs using varying degrees of
smoothing; (b) measuring features of the image; (c) fusing a
least aggressively smoothed image with a most aggressively
smoothed image based on the features of the image to provide
a fused output; (d) fusing the fused output with the most
aggressively smoothed image based on the features of the
image; and (e) iterating steps (a)-(d) K times, replacing the
more aggressively smoothed image with the one calculated in
step (d).

In another aspect of the invention, a method of calculating
HVS-based multi-scale transforms based on luminance and
contrast masking characteristics of the HVS, comprises: cal-
culating a multi-resolution transform to yield a set of approxi-
mation and detail coefficients; using the approximation coef-
ficients to mask the detail coefficients to yield multi-scale
luminance-masked contrast coefficients; using the lumi-
nance-masked contrast coefficients at different levels of
decomposition to mask the luminance-masked contrast coef-
ficients to yield the multi-scale luminance and contrast-
masked coefficients.

In another aspect of the invention, a method for multi-scale
de-noising using HVS-based multi-scale transforms, com-
prises: performing, using a computer processor, a multi-reso-
Iution decomposition of an image; de-noising the image by:
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de-noising contrast coefficients; and/or smoothing approxi-
mation coefficients; inferring the smoothed contrast coeffi-
cients using the smoothed approximation coefficients; and
performing an inverse transform to generate an output image.
In another aspect of the invention, a method for generating
a set of image fusion processes based on an adaptive-weight-
ing scheme based on structural similarity, comprises: per-
forming, using a computer processor, multi-resolution pro-
cessing to source images; fusing approximation coefficients
to yield an initial fusion estimate of the approximation coef-
ficients; recalculating weights for averaging of the approxi-
mation coefficients based on a similarity between the initial
fusion estimate and each of the source images; fusing contrast
coefficients using a contrast coefficient fusion process; and
performing an inverse transform to generate an output.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of this invention, as well as the
invention itself, may be more fully understood from the fol-
lowing description of the drawings in which:

FIG. 1 is a block diagram of a system having image pro-
cessing fusion system in accordance with an embodiment of
the present invention;

FIG. 2 is a diagram of a system having a plurality of
processing modules to receive and process an input image and
a fusion module;

FIG. 3 is a diagram of a system having image enhancement
modules to receive and process an input image and a fusion
module;

FIG. 4 is a diagram of a system having segmentation and
fusion of sub-images that are unionized;

FIG. 5 is a diagram of a system having decomposition,
processing modules, and fusion;

FIG. 6 is a diagram of decoupling of global and local image
enhancement;

FIGS. 7(a) and (b) show source images and 7(c)-(%) show
processed images;

FIG. 8 is a diagram of enhancement of color images;

FIG. 9 shows a graphical representation of (a) approxima-
tion, (b) detail, and (c¢) HV S-based contrast coefficient sub-
bands;

FIG. 10 is a diagram showing HVS image enhancement;

FIG. 11 is a diagram of image denoising;

FIG. 12 is a graphical representation of (a) image fusion,
(b) image de-noising, and (c¢) JFD visualized as averaging;

FIG. 13 is a diagram of (a) SFD processing and (b) JFD
processing;

FIG. 14 shows (a) original image, (b) histogram equaliza-
tion processed image, (¢) contrast-limited adaptive histogram
equalization, and (d) image after fusion of (b) and (c); and

FIG. 15 is a representation of an exemplary computer that
can perform at least a portion of the processing described
herein.

DETAILED DESCRIPTION

FIG. 1 shows an exemplary image processing system 100
having fusion in accordance with exemplary embodiments of
the invention. First, second, and third input data 102a-M are
input to each of first, second, and third data processing mod-
ules 104a-M. It is understood that any practical number of
input data and processing modules can be used. The output of
each of the data processing modules 104a-M is provided to
each of first, second and third fusion modules 106a-L. each
generating a respective output data 108a-L. The output data
108 are provided to each data processing module 110a-L the
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outputs of which are provided to fusion modules 112a-L.
Data processing modules 114a-L. receive the output from
fusion modules 112 to generate respective output data-K, as
described more fully below.

FIG. 2 shows exemplary image enhancement of a scene.
An input image 200 is provided to a series of image process-
ing modules 202a-N each providing particular image
enhancement processing with various parameter sets to gen-
erate N secondary outputs I, n=1, 2, . .., N-1, N) from the
single input image 200. In a sense, these secondary outputs
emulate the multiple source images which are assumed to be
available in multi-sensor data fusion applications. The sec-
ondary outputs I, _, are then provided to a fusion module 204
that yields an enhanced output image I'.

Due to the fusion processing, the enhanced output image I'
is an effective combination of the secondary outputs which
fuse the advantages of each of the secondary enhancement
processes. In this context, a variety of suitable image
enhancement processes can be used. The output of the system
will be especially dissimilar from the secondary outputs when
the secondary outputs are themselves dissimilar.

It is understood that where image process K, k=1,2, ... N,
can be the commonly used or new development image
enhancement processes, it can be shown that the system is a
generalized and theoretically sound framework for image
processing. For example, when all the secondary outputs are
equivalent, e.g., [,.=I,=. . .=l =l then I'=],. Therefore, any
image enhancement process can be viewed as an instance of
the inventive system when the same image enhancement
algorithm is used to generate each of the N secondary outputs.
Furthermore, if[,=I,=. .. =I,_;=I,~I, then I'=I. Therefore, if
the secondary processes are parametric for which a given
parameter set yields the original image, there is a parameter
set which will yield the original image by an inventive system.

Exemplary embodiments exhibit a recursive structure if the
secondary enhancements are the proposed enhancement sys-
tem itself. In this case, different fusion approaches can be
used in the secondary enhancement stages, as well as in the
final stage, which fuses secondary outputs. Similar formula-
tions can be derived for other image processing applications,
including the denoising application described herein. The
proposed framework in the context of image enhancement,
image denoising, and edge detection are illustrated in FIGS.
3, 4, and 5, respectively.

FIG. 3 shows an image enhancement system 300 having a
first enhancement module 302a outputting I, a second
enhancement module 3025 outputting I,, a third enhance-
ment module 302¢ outputting I, ,, and a fourth enhancement
module 302N outputting . In other embodiments, instead of
enhancement modules, denoising modules and/or edge detec-
tion modules can be used for image denoising/edge detection
applications. It is understood that any practical number and
type of enhancement process can be used.

FIG. 4 shows an exemplary system 400 decomposing sec-
ondary images into M sub-images using a segmentation
approach, and fusing each sub-image of each the secondary
images. A first second image I, is provided to a first segmen-
tation module 402, which outputs sub-images I, |, I, ,, . . .
I, as15 11 s and a second image I is provided to a second
segmentation module 404, which outputs sub-images I,
Ly.2s - - Iyaz1s Lyas Itis understood that any practical number
of input images and segmentation modules can be used. The
sub-images are processed by fusion modules 406 which pro-
vide outputs to unionization module 408.

It is understood that the sub-images can be fused in various
ways. For example, Human Visual System (HVS)-based
decomposition may be used to decompose sub-images based
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6

on the human eye’s ability to discriminate between important
and unimportant data. Each sub-image may then be fused
according to a fusion scheme which accurately addresses the
features of each sub-image. The fused sub-images are union-
ized to yield the final fused output. The fusion 406 of FIG. 4
can be used as the fusion in the generalized system in FIG. 1.

In one embodiment, the input image is decomposed into N
grayscale representations by bi-dimensional empirical mode
decomposition, for example. This differs from the system of
FIG. 4 as the domains of each representation are equal,
whereas the system in FIG. 5 decomposes the image into
non-overlapping regions. Each grayscale representation from
the decomposition is separately processed and fused to yield
the output image, as shown in FIG. 5.

In another aspect of the invention, a system effectively
combines indirect and direct image enhancement procedures.
Indirect and direct image enhancement processing are based
on different criteria so that their respective outputs may be
complementary in nature. Indirect approaches generally
improve global contrast, but indirectly alter the edge infor-
mation of images in an erratic manner. Consequently, the
original edge information of the image may either not be
accurately preserved or may be over-enhanced. Conversely,
direct image enhancement procedures are more suitable for
local edge enhancement.

In one embodiment, a method uses a priori knowledge to
decouple global and local enhancement procedures, allowing
them to be tuned independently. FIG. 6 shows an exemplary
process 600 in which an image is first subjected to a modified
global contrast enhancement process, which can be viewed as
a specific instance of the generalized system, where the sec-
ondary outputs I, and I, are the original image and the output
of an indirect image enhancement process 602, respectively,
and where the fusion process 604 makes direct use of the a
priori knowledge. The direct image enhancement 606 outputs
the enhanced image.

The fusion process begins by performing an [-level
decomposition of I; and I, using a multi-resolution decom-
position scheme. This decomposition generates the approxi-
mation coefficient sub-bands y,l,o(l), y,z,o(l) and i detail coef-
ficient sub-bands y,l,l.(l), y,z,l.(l) at each decomposition level 1
for I, and L, respectively. For this stage, any multi-resolution
decomposition scheme may be used. Here, the Laplacian
Pyramid (LP) is used to illustrate the approach, in which case,
i=1. Assuming that the approximation coefficients y,Z,O(L)
adequately represent the desired global contrast enhance-
ment, the approximation coefficients of the fused image at
level L are given by

)’1,_,,,;,,0(L) :)’IZ,O(L) (€9

The detail coefficients of the fused output restore the con-
trast information of the original image in order to accurately
preserve its edges. Since the human visual system is sensitive
to relative luminance changes, the detail coefficients of the
original image are scaled according to the luminance changes
resulting from the global contrast enhancement. The exact
means by which this is accomplished depends on the multi-
resolution decomposition scheme used by the fusion
approach. For the case of the LP, the contrast of the original
image is restored by

EXPAND(yY) ;.. ) @

0} o
EXPAND(yY) ;,.)

Ypi =Y.
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The inverse transform is performed to yield the image I'.
This procedure successfully obtains the global contrast
enhancement of the indirect enhancement algorithm while
retaining the contrast of the original image. Applying a direct
image enhancement 606 to I' thereafter can enhance fine
details while still obtaining the advantages of the global con-
trast enhancement, yielding the final enhanced output I_,,,.
Thus, the processing decouples the local and global enhance-
ment procedure from each other and allows them to be tuned
independently.

It is understood that a known class of image fusion pro-
cessing adopts the Parameterized Logarithmic Image Pro-
cessing (PLIP) model, which is a nonlinear image processing

10

8

teristics. At its core, the model generalizes the isomorphic
transformation originally formulated in by the Logarithmic
Image Processing (LIP) model. Consequently, a new set of
PLIP mathematical operators, namely addition, subtraction,
and scalar multiplication, are defined for graytones g, and g,
and scalar constant ¢ in terms of this isomorphic transforma-
tion, thus replacing traditional mathematical operators with
nonlinear operators which attempt to characterize the nonlin-
earity of image arithmetic. Table 1 summarizes and compares
the LIP and PLIP model operators, where the specific
instance in which p=M, y=k=h, and p=1, is of particular
practical interest. Practically, for images in [0, M), the value
of'y can either be chosen such that y=M for positive y or can
take on any negative value.

TABLE 1

LIP and PLIP model mathematical operators

LIP Model PLIP Model
Graytone g=M-1I g=p-1
Addition ) 28 N 28
ade=atn-37 adnEnten-—-
Y
Subtraction g -8 ~ g -8
g A g=M 80g =k-———
! 2 M-g e k-g

Scalar

Multiplication

Isomorphic

Transformation

Graytone

Multiplication

Convolution

C.‘.B g1=M_M(1_i,I_1)C C®g1=¢71(C¢(gl)):7—7(1—%)c

t@=M-eol-gl - A[l - exp(_ygﬂ

214 2= ¢ @(2)9(E2)

wh g =" (wh(g)

g1 =0 @e)P(2)
wrg = ¢ (WH(g)

framework whose mathematical operators more consistently
correspond to human visual system characteristics. In one
embodiment, a fusion system employs PLIP mathematical
operators that may be used in the spatial or transform domain
based on visual and computational requirements. PLIP is
described, for example, in S. Nercessian, K. Panetta, and S.
Agaian, “Multiresolution Decomposition Schemes Using the
Parameterized Logarithmic Image Processing Model with
Application to Image Fusion,” EURASIP Journal on
Advances in Signal Processing, vol. 2011, Article ID 515084,
17 pages, 2011. doi:10.1155/2011/515084, which is incorpo-
rated herein by reference.

The PLIP model interprets images as absorption filters
known as graytones based on the maximum range of the
image M, and processes these graytones using a new arith-
metic which replaces standard arithmetical operators. The
resulting set of arithmetic operators can be used to process
images based on a physically relevant image formation
model. The model makes use of a logarithmic isomorphic
transformation, consistent with the fact that the human visual
system processes light logarithmically. The model has also
shown to satisty Weber’s Law, which quantifies the human
eye’s ability to perceive intensity differences for a given
background intensity. It has been shown that psychophysical
laws can be context-dependent, and thus, the constants gov-
erning these psychophysical laws are indeed parametric.
Thus, the parametric nature of the model allows mathematical
operators to be tuned according to image-dependent charac-
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When y=256, the PLIP model operators revert to the LIP
model operators. Furthermore, it can be shown that

lim @@= lim @la=a (3)
[¥l=o0 [¥l=o0

Since ¢ and ¢~* are continuous functions, the PLIP model
operators revert to arithmetic operators as |yl approaches
infinity and therefore, the PLIP model approaches standard
linear processing of graytone functions as |yl approaches
infinity. Thus, for the case of image fusion algorithms, an
image algorithm which utilizes standard linear processing
operators can be found to be an instance of an image algo-
rithm using the PLIP model with y=co. Therefore, the PLIP
framework can generalize any state-of-the-art fusion
approach which has been developed or has yet to be devel-
oped. Image fusion algorithms can be adapted using the PLIP
model by providing a mathematical formulation of multi-
resolution decomposition schemes and fusion rules in terms
of'the model. This may be accomplished by directly replacing
standard operators with PLIP operators, or by using the iso-
morphic transformation which defines the PLIP model. The
graytone g of the input image I is first generated. By way of
the isomorphic transformation, a multi-decomposition
scheme at decomposition level 1 is calculated by

T(3o)=~ (T3 ™)) Q)
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where ¥, ’=g. Similarly, the inverse procedure begins from
transform coefficients at the highest decomposition level L.
Each synthesis level reconstructs approximation coefficients
at a scale I<L. by each synthesis level by
T TG @I ®
Given }NIII,O(L), }NIIZ,O(L), .. .}NIINJ,O(L), }NIIN,O(L), the approxima-
tion coefficients of images 1, L,, . . . I, I at the highest
decomposition level L, yielded using a given parameterized
logarithmic multi-resolution decomposition technique, the
approximation coefficients for the fused image I' at the high-
est level of decomposition according to the PLIP model is
given by
)71’,O(L):(i)il(RD(&)@II,O(L)a(i')(ﬁIZ,O(L)a e
Fryo ™) (6
where R, is an approximation coefficient fusion rule imple-
mented using standard arithmetic operators, respectively.
Similarly, for each of the i high-pass sub-bands of each of the
N images at each level of decomposition 1, the detail coeffi-
cient rule performed at each level of decomposition is given

by

S s
Dy 0D

)71',i(l)f(ifl(RD((i’@q,i(l))a(i)(ﬁlz,i(l))a S
07,0 M

FIGS. 7a-k illustrate the improvement which can be
yielded in the fusion of multi-sensor data using the inventive
class of PLIP image fusion, and the necessity for the added
model parameterization. The Qj; quality metric used for
quantitatively assessing image fusion performance implies a
better fusion for a higher value of Q.. The figure shows that
firstly, the PLIP model reverts to the LIP model with
y=M=256, and secondly, the combination of source images
using this extreme case may still be visually unsatisfactory
given the nature of the input images, even though the process-
ing framework is based on a physically inspired model.

FIGS. 7d-f illustrate the way in which fusion results are
affected by the parameterization, with the most improved
fusion performance yielded by the proposed approach using
parameterized multi-resolution decomposition schemes and
fusion rules relative to both the standard processing extreme
and the LIP model extreme with y=430.

FIGS. 7a,b are original “navigation” source images, image
fusion results using the LP/AM fusion rule, and PLIP model
operators with (¢) y=256 (LIP model case), Q,;~=0.3467, (d)
y=300, Q,~0.7802, (e) y=430, Q,~=0.8200, (f) y=700,
Q,-0.8128 (g) yv=10%, Q,,0.7947, (h) standard mathemati-
cal operators, Q,=0.7947

The described approaches, as described for grayscale
images, can be extended for the case of color images, as
shown in FIG. 8. In this embodiment, the RGB color image is
first converted 802 to a color space such as HSV, XYZ,
YCbCr, PCA, CIELAB, etc. The luminance channel 802a
resulting from the color space transformation is subjected to
the inventive fusion processing 804 described above where
secondary outputs using different enhancement processes
804H are generated and later fused 804¢ to produce the
enhanced luminance channel 8044 of the image. Depending
on the nature of the color space, the other two channels may
be subjected to a color restoration procedure. Performing the
inverse color space transformation 808 with inputs from color
restoration 806 yields an enhanced RGB output image I'.

In another aspect of the invention, in the context of noise
removal from images, an iterative fusion-based technique for
image denoising is provided. One issue in image denoising is
the tradeoff between effective noise removal and preservation
of edges. In one embodiment, a method first generates sec-
ondary outputs which differ by their degree of smoothing.
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The images I, ;, and I, are the denoising results obtained
using the least and most aggressive amounts of smoothing,
respectively. The secondary outputs can be generated by any
denoising approach, such as Gaussian filtering, anisotropic
diffusion, total variation, wavelet approaches, etc. The salient
features of I, ,,, denoted by G, is also determined via an edge
detector, statistical filter, or other means. At each iteration k,
the aim is to improve edge preservation of 1, , while also
effectively denoising the image. This is achieved by itera-
tively fusing information from I, , at edge locations by

Il,k+1:Ga11,0+(1_Ga)12,k (8)

L3 =GOy g +(1-GH) )

where o is a parameter controlling the influence of G on the
fusion process. It is seen that this procedure can effectively
inject the edge information from I, ; into I, , while contribut-
ing substantially less noise. Thus, the inventive approach can
be iterated K times, in which case the final denoising result is
given by I, ..

In another aspect of the invention, exemplary embodiments
perform image enhancement, image de-noising, and image
fusion. Secondary outputs can be fused together by exem-
plary embodiments of the invention. Fusion processing can be
used both to generate secondary outputs, as well as to fuse
secondary outputs to achieve the final output image. This
processing make use of a novel set of HVS-inspired multi-
scale tools that define multi-scale contrast coefficients in a
way which is consistent with the HVS, and alter multi-scale
contrast coefficients for achieving various applications in sig-
nal and image processing.

The HVS perceives relative luminance changes for a large
range of background intensity values. Known as the lumi-
nance masking (LM) phenomena, the degree to which the
HVS is sensitive to relative, and not absolute, luminance
differences varies with background illumination. Addition-
ally, the HVS is sensitive not only to relative changes in
luminance, but also to relative changes in contrast. This con-
trast masking (CM) phenomena of HVS is one in which the
visibility of a certain stimulus is reduced due to the presence
of another one. Accordingly, we formulate HVS-inspired
multi-scale transforms on the LM and CM phenomena of the
HVS. In this case, the transforms are developed by directly
emulating the HVS masking effects on transform domain
coefficients. It should be noted that any existing multi-scale
signal representation scheme can be used as the base trans-
form for our HVS-inspired multi-scale transform formulation
and processing.

FIGS. 9a-c show a graphical depiction of the generation of
(a) approximation, (b) detail and (c) HVS-inspired contrast
coefficient sub-bands (absolute magnitudes) using the LP as
the base transform.

Given the approximation and detail coefficients yielded
using a standard multi-scale transform, the inventive contrast
measure first measures the LM contrast. The exact means by
which this is accomplished is dependent on the given trans-
form. In the LP domain, the LM contrast is given by

(n)

k34
(D)7
ay + 55

o (10)

where al is a small constant, y1 is a parameter which controls
the degree to which the luminance-masked contrast is
affected by the background luminance, and X is an expansion
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function consisting of some up-sampling and interpolation
operation. For the pyramidal-based approaches, the expan-
sion is given by

*=EXPAND(Ix) (11

and for the wavelet-based approaches, it is given by

J_C:éR*Léc*ﬂprRJuC (12)

The LM contrast is then masked with a local activity mea-
sure, which is a function of the LM contrast, to yield the

12
teristics with commonly used multi-resolution decomposi-
tion schemes. Accordingly, the HVS-LP, HVS discrete
wavelet transform (HVS-DWT), HVS stationary wavelet
transform (HVS-SWT), and HVS dual-tree complex wavelet
transform (HVS-DT-CWT) are provided. The analysis and
synthesis steps required to calculate each of these HVS-in-
spired transforms are given in Table 2. In each case, the
analysis stage masks detail coefficients first by a measure of
local luminance and then by a measure of local activity to
yield the HV S-inspired contrast. Each synthesis stage recov-
ers the details coefficients from the HV'S contrast coefficients.

TABLE 2

Analysis and synthesis stages of the proposed HVS-inspired multi-scale transforms

HVS-LP HVS-DWT HVS-SWT HVS-DT-CWT
Analysis LM (n) (n) (n) (n)
o4 o — Y1 cm o i n  _ v (n  _ v
—o D7 LM T T M T T LM T T
ap +|yg ag + [yl ag +|y§’"! ag +[yg "
CM C(n) C(n) (n) (n)
CZLLlM _ LM C(n) _ LM (n) _ L,LM C(n) _ LM
= — D) 72 LM = T — a7 LM = T on v LM = T a7
ar+(Cyy | a +[Cilpy | a2 +1C | a +[Cy |
Synthesis CM
Y iy = Cly = Cly = Cllu =
=(n+1),72 =(nt+1),72 1,7 =n+l) Y2
C(an)‘M '[32 +1Cpy 1 ] CE,”L)CM '[32 +1Ci | ] CE,”L)CM a2 + |CffZl,,)| ’] CE,”L)CM '[32 +ICi | ]
LM
¥ = ¥ = v = v =
Dy ¥ ¥ Y
iy -l + 1961 Clh -las +1y6"1™) Clly -[a +156"1™) Ch - [ar +1y6+ 1™

proposed luminance and contrast masked (LCM) contrast.
Again, the manner in which this is accomplished depends on

FIG. 10 shows an exemplary system providing image
enhancement processing based on HVS multi-scale trans-

the base transform which is employed. In the context of the 35 forms. A forward HVS multi-scale transform 1002 is applied
LP, the multi-scale LCM contrast is defined as: to the original image. The brightness of the image is adjusted
1004 by altering the approximation coefficient sub-band at
the highest level of decomposition. Non-linear contrast map-
o il 13 ing 1006 is applied to the human visual contrast coefficient
CPy= ———— 4 P& pp
M a, + |E(L"C+ bz sub-bands at each orientation and level of decomposition. In
this stage, both contrast enhancement and dynamic range
. . . compression can be applied. Lastly, the inverse HVS trans-
where a, is a small constant, and y, is a parameter which . o .

. . . form 1008 is performed, yielding the enhanced image.

controls the degree to which the perceived contrast is affected aditi shancing th ¢ N
by surrounding stimuli, as illustrated in FIGS. 9a-c. With 45 In a 1t10n.t0 e arﬁflng the contrast o hceﬁau} lmage
a,=a,=y,=Yy,=0, the contrast reverts the detail coefficients st.ructures, an 1mage e ancement process should a1so pro-
given by standard multi-scale transforms. vide a (preferably direct) means of achieving dynamic range

Other combinations incorporate the LM and CM charac- compression and giloba! brightness adjustments as deemed
teristics of the HVS with degrees dictated by v, and v,. Thus, hecessary .for th? given input image data. There may a.lso be
the contrast measure generalizes existing multi-scale trans- 50 instances in which the necessities for an adequate image
forms and algorithms using said transforms, in a manner enhancement are contradictory to the requirements dictated
which is motivated by known and relevant HVS characteris- by a contrast enhancement framework, in which case these
tics. requirements must be relaxed.

The standard transform coefficients can be recovered from The extension of existing direct multi-scale contrast
the multi-scale LCM coefficients. For example in the LP 355 enhancement frameworks to a more general direct multi-scale
domain, the LM contrast can be calculated from the LCM image enhancement framework demands that some addi-
contrast by tional requirements of contrast enhancement schemes be

added. One such requirement is that the direct enhancement

Cua"=Cucad ™ [2+1C 01 s dure should yield a visually pleasing level of bri
procedure should yield a visually pleasing level of brightness.
and the detail coefficients are calculated in terms of the LM 60 Thus, upon decomposing the input image into its multiple
contrast by (1) sub-bands, the brightness of the image is first adjusted. One of
_ the most common means of brightness adjustment is by a

¥ M= (").[a +7, ("+1)‘Y1] (15) :

LM T e power law transformation. However, power law transforma-

The standard LP synthesis procedure can then be used to tions will perform simultaneous brightness adjustments,
reconstruct the image signal. As the inventive HVS masking 65 dynamic range compression, and thus, the degree to which

is a completely invertible procedure, a novel class of multi-
scale transforms is achievable, which combines HV'S charac-

they are tuned cannot be controlled independently or directly.
Equalization techniques have also been considered. However,
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they may not accurately preserve edges as the local edge
content is erratically treated. Given a suitable contrast mea-
sure which accurately encompasses elements of human
vision, the brightness of the image can be sufficiently and
accurately adjusted by adding a constant to the approximation
coefficient sub-band at the highest level of decomposition.
Again, exemplified in the case of the LP, the brightness of the
image is tuned by

YoM =y+L (16)

where L is a brightness parameter. With 1.=0, the current
brightness level of the image is preserved.

The extension to a more general direct image enhancement
framework also demands that some additional requirements
mandated by contrast enhancement schemes be relaxed
depending on the image context. This is to say that direct
image enhancement procedures should provide a means of
directly achieving both contrast enhancement and dynamic
range compression. For example, non-uniformities in light-
ing and shadows can be perceived as large-scale contrast, and
magnifying these contrasts may only exacerbate these nega-
tive effects. Thus, there may be instances in which overall
visual quality is improved by compressing, or reducing the
contrast which is exhibited at a given scale. To this end, we
relax the requirements of a non-linear mapping. Specifically,
if the contrast at a given scale is to be enhanced, areas of low
contrast should be enhanced more than areas of high contrast,
and in this case the non-linear contrast mapping function
should not cause smoothing. However, if the contrast is to be
decreased, for example to remove non-uniform illumination,
or to avoid signal clipping because caused by the brightness
adjustment step, areas of low contrast should have their con-
trast decreased less than areas of high contrast, and the non-
linear mapping function should not cause contrast enhance-
ment. Accordingly, the HVS-inspired contrast non-linearly
mapped by

C ,LCM,i(n):SgH(CLCM,i(n))}"i(n)( I CLCM,i(") D]

where the proposed non-linear contrast mapping function
7\1-(")(') is

an

(n)

=1
& x4 (gl - ghT x> T

x x=T" (13)

and g,"=g,"=0. This formulation allows (1) gain factors
less than 1 to be considered for dynamic range compression,
(2) the enhancement of high contrast areas to be tuned, and (3)
an extension of the non-linear mapping to the DT-CWT coet-
ficients in which phase is preserved. Therefore, the inventive
image enhancement allows for the brightness and amount of
contrast enhancement/dynamic range compression to be con-
trolled directly and independently of each other, maintaining
the spirit of a direct enhancement framework. To summarize
the exact means by which direct image enhancement is
achieved, the inventive process, as formulated for an N level
HVS-LP decomposition, is described as follows:

1) Generate an N+1 level Laplacian pyramid of I

2) Measure the LM contrast of the original image

3) Measure the LCM contrast of the original image

4) Initialize y',** Y=y , &0, C',,=C", .

5) Adjust the brightness

6) Calculate the enhanced LCM contrast by a non-linear
mapping

7) Calculate the enhanced LM contrast by

Cliad™=Clread™ [az+ (T P12
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8) Calculate the enhanced detail coefficients by
yfl(n):CfLMm).[alH;fo(n+l)\v1]
9) Calculate the enhanced approximation coefficients by

¥o™=y, W+EXPAND[y "]
10) The enhanced image I'=y',

A similar formulation of the image enhancement algo-
rithms is developed for the other HV'S multi-scale transforms
whose analysis and synthesis stages were summarized in
Table 2.

Due to the generalized formulation of the proposed
approach, the processing encapsulates many existing multi-
scale image enhancement approaches. Table 3 summarizes
direct enhancement processes which are generalized by the
proposed approach. The proposed image enhancement pro-
cessing not only uses a more comprehensive multi-scale
model of the HVS, but also extends the use of non-linear
detail coefficient mappings to HVS-inspired contrast coeffi-
cients, and is capable of adjusting the overall brightness of the
enhanced result and achieving dynamic range compression.

TABLE 3

Comparison of existing direct enhancement
algorithms with proposed method

Dynamic
Range
Direct Coefficient  Brightness Compres-
Enhancement Y1 Y, mapping Adjustment  sion
Multi-scale 0 0 Linear No No
Unsharp-
Masking
Laine’s 0 0 Non-Linear No No
Algorithm
Tang’s 1 0 Linear No No
Algorithm
Inventive Vari- Vari- Non-linear  Yes Yes
method able able

The inventive HVS-inspired multi-scale transforms are
also useful for image de-noising. Here, we exemplify the
HVS-inspired multi-scale transforms for image de-noising,
and introduce a HVS-inspired multi-scale de-noising process
based on the non-local means (NLM) principle, in which
relevant patches within images are used as self-predictions
for edge-preserving smoothing. The motivation for the inven-
tive processing is to combine the state-of-the-art performance
of the NLM algorithm with the advantages of multi-scale
de-noising approaches, and additionally, multi-scale human
visual processing. The extension of the NLM algorithm to the
multi-scale case can have various related interpretations with
some subtle differences. As with all multi-scale de-noising
approaches, the presented approach de-noises the edge struc-
tures occurring at different scales, as given by the coefficient
sub-bands at each level of decomposition. Moreover, it can
also be perceived as a extension of the NLM process in which
multiple similarity windows are considered.

In practice, the NLM de-noising procedure is a spatial
domain procedure which uses a weighted sum of pixels
within a square search window W, of the central pixel to be
de-noised. For each pixel of the noisy image, the weights in
the local window are calculated by

1 15, (R ) — In(xk’,l’)”;a 19

Wk, 1) = 7P 2
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-continued

1 Re) = LS I3,
h2

(20)
Zk, D)= exp[

W Hew)

where b is a smoothing parameter. The term |[L,(® -1,
(X ;/)|l..” is the 1, norm between the neighborhood centered

around pixels (k1) and (k',I", ¥ .z and N v Tespectively,
which have been weighted using a Gaussian square profile W,
of standard deviation a. At each pixel, image de-noising is
achieved using the NLM process achieved by

fe =" 3w, LK, D) @D

W Hew;

FIG. 11 shows a block diagram of an exemplary multi-
scale NLM process 1100 referred to as the HVS-NLM.
Firstly, the image is decomposed 1102 using any of the HVS-
transforms described above, for example. Secondly, de-nois-
ing 1104 is applied at each level of decomposition. A NLM
filtering stage 1106 acts as an intermediary de-noising step.
Namely, the approximation coefficients at each level of
decomposition are determined, and the NLM procedure is
applied. The intermediate approximation coefficients at each
level of decomposition are given by

Po imd P =NLM(yo", 1) 22

where h® is the smoothing parameter at a given scale n. In
order to perform level dependent smoothing in accordance to
the intuition in which lower levels of decompositions are
smoothed more aggressively than higher ones, the smoothing
parameter at each scale is defined as

HO 23)

n

B =

Where m is a parameter defining the relationship between
smoothing factors at each level of decomposition. The
approximation coefficient sub-band at the highest level of
decomposition 1108 can be defined as either

FoP=NLM (3™, 1%) 4

or

ﬁo(N):.Vo(N) (25)

This is a subtle implementation option, in which the
approximation sub-band at the highest level of decomposi-
tion can chosen to either be de-noised or not. The detail
coefficients at each level of decomposition are determined by
performing a single level analysis on each intermediate
approximation coefficient sub-band by

CIARA A Fiep®)=T (ﬁo,im("fl))
Because the processed detail coefficients at each level of
decomposition as well as the approximation coefficients at
the highest level of decomposition have now been deter-
mined, the transform space of the de-noised result is suffi-
ciently filled. The de-noised image can be calculated by per-
forming 1110 the inverse transform

6
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In another aspect of the invention, a set of image fusion
processes based on the HVS-inspired multi-scale tools are
provided with inventive fusion of perceptually-based contrast
coefficients provided by these transforms and a novel means
of fusing approximation coefficients based on an adaptive
similarity-based weighting scheme. Accordingly, the pro-
posed approximation coefficient rule is developed, using the
HVS-LP for this specific formulation. The proposed approxi-
mation coefficient rule begins by first computing an estimate
of'the fused approximation coefficients, given by the uniform
average

(N) (N)
& _ Yot Yno

iFo T 7

28

When using a global, uniform averaging scheme, the
locally less pertinent information will tend to “wash-out” the
locally more pertinent information. However, some infer-
ences can still be made from this initial uniform fusion.
Namely, one would observe that such a fusion would still be
more perceptually similar to the stimulus than to the uniform
background. Thus, using the proposed weighting scheme, the
stimulus would be given higher weight than the uniform
background, in a way which was not directly related to mea-
suring the amount of salient features in each of the source
images. Therefore, this hypothetically demonstrates that the
degree to which the initial estimate is perceptually similar to
each source image could feasibly used to adaptively deter-
mine the sensor weights for the fusion procedure. A different
initial estimate could have also been used. The effectiveness
of such a weighting scheme is thus dependent on the estab-
lishment of a perceptually-driven similarity metric, such as
the gradient structural similarity index (GSSIM). Accord-
ingly, the fusion weights are defined by

|GSS1My 29)

. ona
W w b /)|
F0710

wilh ) = =eens

vy ™) (i, j)|"‘+|GSS1My
F,071,0

5
w w &D
'F071,0

wall, ) =1-w (i, )

where o is an empirical, user-defined parameter, which has
been added to dictate how much stronger the locally more
similar source image should be weighted. The weighted
fusion is then given by
)’IF,O(M(iJ):W1(iJ)YIl,o(m(iJ)+Wz(iJ)YIz,o(m(iJ) (30)
Practically, the o parameter dictates the degree to which
the weights can feasibly deviate from those in the uniform
averaging case, with this deviation derived from the local
similarity between the initial fused image and each of the
source images. If a=0, then w,(i,j)=w,(1,j)=0.5 at all pixel
locations, and thus, the proposed method reverts to the uni-
form averaging case. For non-negative values of o, the fusion
weights are adaptively altered according to the local similar-
ity assessment which has been described, with the degree of
the alteration dictated by a. This is to say that the adaptive
weighting scheme can determine which sensor should have a
greater weight, and the o parameter dictates exactly how
much more of a greater weight it should have. The inclusion
of'this a parameter generalizes the approximation coefficient
fusion rule between uniform weighting (a=0), simple selec-
tion (a=), and values in between this range. In practice, it is
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sufficient to set a=1, as a formidable improvement in the
fusion quality is already yielded in this case.

The inventive process also determines the contrast coeffi-
cients of the fused image C,, Leal at each scale n using an

absolute contrast coefficient maximum rule

{ C(I'I),LCM(L 7 |CZL),LCM(L f)| > |C(l;),LCM(is f)| Gh

d?vLCM D=y ) )
dz,LCM(is )l |C11,LCM(is = |C12,LCM(is bl

The detail coefficients of the fused image at each scale are
then computed by using the synthesis equations of the HVS-
LP.

The performance of fusion processes deteriorate consider-
ably when the input source images themselves are corrupted
by noise. One solution for remedying this is to de-noise the
images as a pre-processing step, or “denoise-then-fuse.”
Alternatively, another solution is to fuse the noisy images and
de-noise this result, or “fuse-then-denoise.” As described,
these processes are referred to as separate-fusion-de-noising
(SFD) processes, because the fusion and de-noising proce-
dures are performed independently of each other. In contrast,
in a joint-fusion-de-noising (JFD) architecture, fusion and
de-noising are in a sense performed simultaneously. Specifi-
cally, the input images are again fused, but in contrast to the
SFD approach, one image may also help to de-noise another
more effectively.

The extension of the NLM framework for joint de-noising
and image fusion is motivated by FIGS. 12a-¢, which show
(a) image fusion, (b) image de-noising, and (c¢) JFD visual-
ized as averaging along different axes. Visualizing the input
images as matrices placed on a vertical stack, image fusion
can be interpreted as an averaging procedure performed ver-
tically, as in FIG. 124, while image de-noising, horizontally,
as in FIG. 124. In fact, the de-noising operation can itself be
viewed as a vertical averaging procedure, but of shifted and
adaptively weighted versions of the image(s). Thus, the JFD
procedure can be one in which both vertical and horizontal
averaging are performed simultaneously.

FIG. 13a shows a separate-fusion-de-noising (SFD) archi-
tecture and FIG. 135 shows a joint-fusion-de-noising (JFD)
architecture. An inventive NLM-based JFD procedure is now
formulated, which is easily applicable both to the NLM and
HVS-NLM procedures. For ease of clarity, the procedure will
be defined in the context of NLM. The extension to the HVS-
NLM case is achieved by performing the JFD scheme at each
level of decomposition, in a manner consistent to that which
has been previously described.

The images 1, and 1, are fused in some way, yielding the
noisy fusion result I .. Here, they are fused using the proposed
adaptive HVS-inspired approach. Three weights of the form
w, ;77 are defined, where q is the reference image (in this case,
the fused image 1) and r is the template image. The weights
are given by

F—— F®Ren) = IFRe I3, 2
Wi (K, ) =exp - 2z

N MF(Sen) = 1R 13, 33
Wit (K, 1) = exp| ————7—————

P F(Sen) = 2GR I3, 34
Wi (K, 1) = exp| ————7—————
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To determine if templates from I, 1,, or I, should be used
to de-noise I, a hard decision rule is defined as

ML) = (35)
{1 Wi K Dy Powg (K D wE (K, ) 2 Pow (K, )
0 otherwise
Nk 1) = (36)
{ L Pwi (K, Dy w0, D owi & D 2w F D)
0 otherwise
M1 = 37

{ L Pwi ik, Dy wl W, Do wii Dz w (1)

0 otherwise

where P is a penalty parameter which for practical purposes
can be set to 1. Accordingly, the fused and de-noised result is
given by

(38)
Irtk, =
Z AL, PWEE G, ek, D) + Z ML, D L DIk, D +
Jjew JjeEW

SR DK DIk, D)

Jjew
Z ALk, P U, 1) + Z ALk, Pyl vy +
Jjew Jjew
Z 22,0, PR, )
JeW

If I,=1,, then I,=1,=I,, the JFD process reverts to the de-
noising procedure. If h=0, no de-noising is performed, the
JFD process reverts to the fusion procedure. If P=0, then the
process becomes a SFD procedure. In its most general sense,
this process simultaneously performs image fusion and de-
noising, as the source images I, and I, are used both to gen-
erate and de-noise the fused image.

It is understood that image fusion has been used exten-
sively to fuse multiple source images obtained from multiple
different sensors or capture techniques. However, there has
been no systematic, generalized application of image fusion
developed for the case in which only a single input image is
available. This is generally expected to be the case for many
image processing applications, such as image enhancement,
edge detection and image denoising. Exemplary embodi-
ments of the invention combine the outputs of existing image
processing to yield the output of the system. Thus, by using
image fusion concepts, certain embodiments of the present
invention attempt to improve the quality of existing image
processing by combining the respective advantages of each
technique. Additionally, processes for image enhancement,
denoising, and fusion are developed based on human visual
system-inspired processing techniques. These inventive pro-
cesses outperform standard image processing techniques
because of their generalized multi-scale and perceptually-
based formulations.

One issue in image enhancement is the different and often
times contradictory criteria on which image enhancement
algorithms have been formulated. Indirect image enhance-
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ment algorithms provide visually pleasing global enhance-
ment, but can degrade the integrity of local edge features.
Conversely, direct enhancements can provide adaptive edge
enhancement, but generally do not provide satisfactory global
enhancement. Thus, it is advantageous to combine the outputs
of'these two types of enhancements algorithms to leverage on
the benefits of each. Moreover, given the characteristics of the
direct and indirect image enhancements themselves, it is pos-
sible to more effectively combine their outputs. Using image
fusion methodologies, exemplary embodiments of the
present invention provide global enhancement while retain-
ing the contrast information of the original image. Therefore,
illustrative embodiments of the present invention are able to
effectively decouple edge enhancement and global enhance-
ment procedures so that they can be tuned separately. Doing
so allows the global and edge enhancement procedures to be
performed in series with reduced artifacting, and significantly
improves the visual quality of enhancement results.

Image denoising has been a continuously studied problem
in image processing due to the fundamental tradeoff between
effective noise removal and accurate preservation of edges. In
general, the greater the amount of smoothing which is applied
to the noisy observation, the more the noise is suppressed and
edge details and textures eliminated. Exemplary embodi-
ments of the present invention combine the outputs of differ-
ent denoising processes and/or parameter sets to yield the
final denoised output. Specifically, an iterative fusion-based
approach is used to fuse images smoothed to varying degrees
to more accurately retain edges while also removing noise.
Experimental results show that the proposed approach can
improve image denoising results qualitatively and quantita-
tively using many secondary denoising processes.

Exemplary embodiments of the invention provide image
fusion integrated to improve existing image processing. In
general, the image enhancement processing described above
can be classified as indirect or direct image enhancement
based on the criteria for which enhancement is achieved.
Known image processing techniques do not provide a means
of'using image fusion for image enhancement, image denois-
ing, or any application, where only a single input source
image is available. By employing PLIP model arithmetic
operators can tune the image fusion process according to
image-dependent characteristics. Standard mathematical
operators may be viewed as an instance of the PLIP model
arithmetic, and therefore, the image fusion adopting the PLIP
model can be viewed as a generalization of existing image
fusion using standard mathematical operators. The applica-
tion of image fusion in this manner poses a means of com-
bining the advantages of the numerous image enhancement
methods that have been developed according to their various
criteria. In one embodiment, the proposed system provides a
means of combining image enhancement processes to
improve both the local and global image contrast. Another
embodiment decouples the global and adaptive enhancement
procedures so that they can be tuned independently and be
used in series.

It is understood that image enhancement processing
described herein is desirable in a wide range of applications,
such as object detection, object recognition, and other com-
puter vision and computer-aided decision systems, security,
medical, digital image retouching software packages, and the
like.

FIG. 15 shows an exemplary computer 800 that can per-
form at least part of the processing described herein. The
computer 1500 includes a processor 1502, a volatile memory
1504, a non-volatile memory 1506 (e.g., hard disk), an output
device 1507 and a graphical user interface (GUI) 1508 (e.g.,
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a mouse, a keyboard, a display, for example). The non-vola-
tile memory 1506 stores computer instructions 1512, an oper-
ating system 1516 and data 1518. In one example, the com-
puter instructions 1512 are executed by the processor 1502
out of volatile memory 1504. In one embodiment, an article
1520 comprises non-transitory computer-readable instruc-
tions.

Processing may be implemented in hardware, software, or
a combination of the two. Processing may be implemented in
computer programs executed on programmable computers/
machines that each includes a processor, a storage medium or
other article of manufacture that is readable by the processor
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and one or more output
devices. Program code may be applied to data entered using
an input device to perform processing and to generate output
information.

The system can perform processing, at least in part, via a
computer program product, (e.g., in a machine-readable stor-
age device), for execution by, or to control the operation of,
data processing apparatus (e.g., a programmable processor, a
computer, or multiple computers). Each such program may be
implemented in a high level procedural or object-oriented
programming language to communicate with a computer sys-
tem. However, the programs may be implemented in assem-
bly or machine language. The language may be a compiled or
an interpreted language and it may be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program may be deployed to be
executed on one computer or on multiple computers at one
site or distributed across multiple sites and interconnected by
a communication network. A computer program may be
stored on a storage medium or device (e.g., CD-ROM, hard
disk, or magnetic diskette) that is readable by a general or
special purpose programmable computer for configuring and
operating the computer when the storage medium or device is
read by the computer. Processing may also be implemented as
a machine-readable storage medium, configured with a com-
puter program, where upon execution, instructions in the
computer program cause the computer to operate.

Processing may be performed by one or more program-
mable processors executing one or more computer programs
to perform the functions of the system. All or part of the
system may be implemented as, special purpose logic cir-
cuitry (e.g., an FPGA (field programmable gate array) and/or
an ASIC (application-specific integrated circuit)).

Having described exemplary embodiments of the inven-
tion, it will now become apparent to one of ordinary skill in
the art that other embodiments incorporating their concepts
may also be used. The embodiments contained herein should
not be limited to disclosed embodiments but rather should be
limited only by the spirit and scope of the appended claims.
All publications and references cited herein are expressly
incorporated herein by reference in their entirety.

What is claimed is:
1. A method for performing image fusion for image pro-
cessing, comprising:

receiving a first input image (I);

generating, using a computer processor, N secondary out-
puts (I,, n=1, 2, . . . N-1, N) using N combinations of
secondary image processes and/or parameter sets
derived from the first input image (I); and

fusing the intermediate outputs to yield a processed output
(I") including decomposing the first input image into
different grayscale representations, separately process-
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ing the different grayscale representation to provide out-
puts, and fusing the outputs to yield the processed output
.

2. The method according to claim 1, wherein the first input
image was captured by a single sensor. 5
3. The method according to claim 1, wherein the first input

image data was captured via multiple sensors.

4. The method according to claim 1, further including
fusing the intermediate outputs based on at least one param-
eter corresponding to one or more of image enhancement, 10
image denoising, edge detection, object detection, object rec-
ognition, and/or computer aided-decision making.

5. The method according to claim 1, further including
decomposing the first input image into different subimages
and fusing the subimages by different processes. 15
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